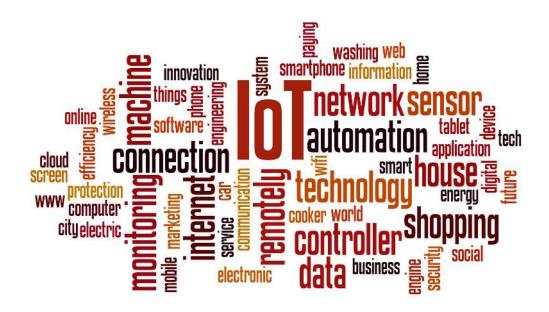
ignion^w


Your innovation. Accelerated.

NB-loT, LoRa, Zigbee or Sigfox in a single antenna

APPLICATION NOTE RUN mXTEND™ (NN02-224)

RUN mXTEND™ –The antenna for IoT: NB-IoT, LoRa, Zigbee or Sigfox

Product: RUN mXTEND™ NN02-224
Dimensions: 12.0 mm x 3.0 mm x 2.4 mm
Frequency regions: 863 – 928 MHz

Do you need an antenna for **NB-IoT**? Use the RUN mXTENDTM. Do you need an antenna for **LoRa**? Use the RUN mXTENDTM. Do you need an antenna for **Sigfox**? Use the RUN mXTENDTM. Doubts about the selection of a **licensed or unlicensed loT standard**? The RUN mXTENDTM will be the choice anyway.

Forget antenna size, antenna shape, antenna placement, even antenna frequency! Choosing the right antenna for your IoT applications will never be a challenge anymore, the antenna leaves the role of critical component and assumes one where the antenna becomes an **off-the-shelf** chip component **able to be tuned as needed**.

Our team has developed the RUN mXTENDTM antenna booster that enables worldwide full performance and connectivity in all the frequency bands of operation for the Internet of Things. The RUN mXTENDTM antenna booster, and its versatility, is one of the best options to **go** wireless having any type of IoT platform because **one antenna covers the IoT frequency** bands. Using the mXTENDTM family you will be part of a new technology that will save you cost, design time and risk.

Find in this IoT application note how the same chip antenna component will operate at the frequency band you need in the **smallest package** ever.

TABLE OF CONTENTS

1.	PR	ODUCT DESCRIPTION NN02-224	4
2.	ON	E ANTENNA, MANY DEVICES	5
	2.1.	PERFORMANCE IN DIFFERENT PCB SIZES	5
	2.2.	VSWR AND EFFICIENCY	6
	2.3.	MATCHING NETWORK	7

1. PRODUCT DESCRIPTION NN02-224

The market for the Internet of Things continues grow and the expanding diversity of IoT devices means product configurations are endless. For this application note we have tested the RUN mXTENDTM antenna booster's (NN02-224) performance when mounted onto various sized ground planes. We show the impact of ground plane size on performance in order to provide the most relevant results for those who design IoT devices of various dimensions. Additionally, we illustrate how to use the RUN mXTENDTM antenna booster for operating at the ISM bands, which are frequently used in IoT devices.

Material: The RUN mXTEND™ antenna booster is built on glass epoxy substrate.

APPLICATIONS

- Smart Metering
- Smart City & Smart Building
- Industrial IoT
- Remote monitoring and control
- Sensors
- Personal & Asset Tracking
- Fleet management
- RFID
- Retail
- Security Systems
- Smart Home
- Medical

BENEFITS

- High efficiency
- Small size
- Cost-effective
- Easy-to-use (pick and place)
- Multiband behaviour (worldwide standards)
- Off-the-Shelf Standard Product (no customization is required)

The RUN mXTEND[™] antenna booster (NN02-224) provides multiband performance in wireless devices throughout a large range of frequencies (698-960 MHz, 1710-2690 MHz and 3400-3800 MHz), enabling worldwide coverage and allowing operation in multiple IoT related communication standards such as NB-IoT, LoRa, Zigbee, SigFox, Neul, Thread, Z-Wave, Weightless, all mobile GSM/UMTS/LTE bands for 2G, 3G, 4G, 5G, Bluetooth and WIFI. Based on Ignion' proprietary Virtual Antenna[™] technology, the RUN mXTEND[™] belongs to a new generation of antenna products focused on replacing conventional antenna solutions with miniature, off-the-shelf components that drive fast, intelligent design. This breakthrough technology has been specifically designed to fit a diverse set of wireless applications – IoT devices are just one of the many environments where this tiny antenna can be transformational.

2. ONE ANTENNA, MANY DEVICES

2.1. PERFORMANCE IN DIFFERENT PCB SIZES

For demonstration purposes, the performance of the RUN mXTEND[™] antenna booster component is measured in different PCB boards within the 863-928 MHz frequency range as used in IoT standards such as NB-IoT, LoRa, Zigbe and SigFox. Please notice that the RUN mXTEND[™] is able to cover a much wider range of frequencies and standards; if your IoT device is to operate in any other band within the 698MHz to 3800MHz range you are welcome to contact support@ignion.io for assistance.

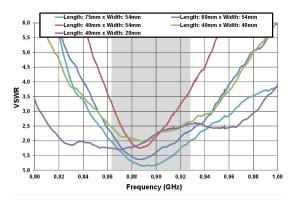
Each PCB board in the following set-up integrates a UFL cable to connect the RUN mXTEND™ antenna booster with a SMA connector so that VSWR and antenna efficiency can be tested. The following results cover a wide scope of ground plane sizes (length and width), ranging from 75mm x 54mm down to 40mm x 20mm.

Figure 1 – Evaluation boards with different ground plane dimensions that provide operation from 863 MHz to 928 MHz.

Measure	mm
Α	86 - 51
В	75 - 40
С	54 - 20
D	8.0
E	5.0
F	11.0

 \mathbf{D} : Distance between the RUN mXTENDTM antenna booster and the ground plane.

Material: The Evaluation Board is built on FR4 substrate. Thickness is 1 mm.


Clearance Area: C x F mm

Tolerance: ±0.2 mm

2.2. VSWR AND EFFICIENCY

VSWR (Voltage Standing Wave Ratio) and Total Efficiency versus Frequency (GHz).

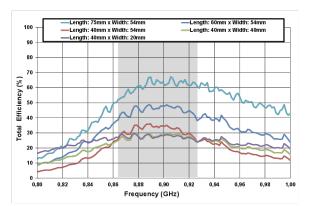
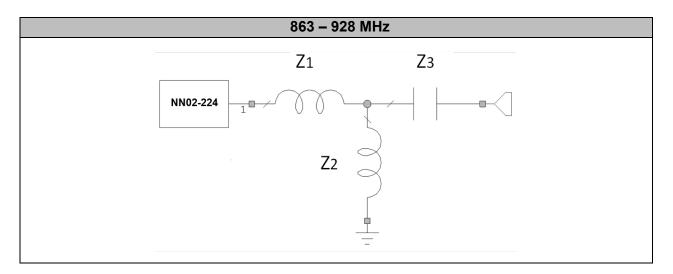


Figure 2 - VSWR and Total Efficiency for the 863 - 928 MHz frequency range (Figure 1).

	LFR (863 – 928MHz)				
Dimensions (B x C)	η _{а 863MHz}	η _{а 928MHz}	Min	Max	Av. η _a
75 mm x 54 mm	50.8	59.7	50.8	67.3	61.2
60 mm x 54 mm	38.1	39.1	38.1	48.6	45.0
40 mm x 54 mm	25.3	24.4	23.9	35.9	31.7
40 mm x 40 mm	24.6	24.3	23.7	29.5	27.5
40 mm x 20 mm	27.1	24.5	23.7	29.7	27.4

Table 1 – Total efficiency (%) comparison considering the different dimensions.



2.3. MATCHING NETWORK

The matching network design and value components for each device and PCB size is provided here. While the antenna component and matching network design and topology remains the same, the value of the components will be adapted to every PCB size for an optimum performance. The specs of a Ignion standard product are measured in a reference evaluation board, to isolate the antenna performance from other system elements. However, when incorporating into real designs, nearby components such as LCD's, batteries, covers and connectors may affect the antenna performance. For this reason, placing pads compatible with 0402 and 0603 SMD components for a matching network as close as possible to the feeding point is highly recommended. The matching network should be implemented in the ground plane area rather than the clearance area, this will provide a degree of freedom for tuning the RUN mXTENDTM antenna booster once the design is finished, taking into account all elements of the system (batteries, displays, covers, etc.).

Please notice that different devices with different ground planes and different components nearby the RUN mXTENDTM antenna booster may require a fine tuning of the matching networks. To ensure optimal results, the use of high Q and tight tolerance components is highly recommended (Murata components).

If you need assistance, please contact support@ignion.io for more information related to our chip antenna component matching service.

Figure 3 – Topology of matching network mounted for the different solutions.

Dimensions (B x C)	Z ₁	Z ₂	Z ₃
75 mm x 54 mm	24 nH	7.5 nH	1.8 pF
60 mm x 54 mm	25 nH	6.8 nH	1.8 pF
40 mm x 54 mm	25 nH	7.2 nH	1.5 pF
40 mm x 40 mm	27 nH	7.2 nH	2.1 pF
40 mm x 20 mm	27 nH	8.2 nH	2.0 pF

Table 2 – Values of the components for each different solution.

7

Va	lue	Part Number
	24 nH	LQW18AN24NG00
Z1	25 nH	LQW18AN25NG80
	27 nH	LQW18AN27NG80
Z 2	7.5 nH	LQW18AN7N5C80
	6.8 nH	LQW18AN6N8C10
	7.2 nH	LQW18AN7N2C80
	8.2 nH	LQW18AN8N2C80
Z3	1.8 pF	GJM1555C1H1R8WB01
	1.5 pF	GJM1555C1H1R5WB01
	2.1 pF	GJM1555C1H2R1WB01
	2.0 pF	GJM1555C1H2R0WB0

Table 3 – Values and part numbers of the components used for the matching networks for the cases with dimensions 75mm x 54mm, 60mm x 54mm, 40mm x 54mm, 40mm x 40mm, 40mm x 20mm.

For additional information, please visit <u>www.ignion.io</u> or contact <u>info@ignion.io</u>.

If you need assistance to design your matching network, please contact support@ignion.io, or try our free-of-charge¹ Antenna Intelligence Cloud design service, which will get you a chip antenna design including a custom matching network for your device in 24h¹. Other information related to Ingion's range of R&D services is available at: https://www.ignion.io/rdservices/

¹ See terms and conditions for a free Antenna Intelligence Cloud service in 24h at: https://www.ignion.io/antenna-intelligence/

Ignion products are protected by **Ignion patents**.

All information contained within this document is property of Ignion and is subject to change without prior notice. Information is provided "as is" and without warranties. It is prohibited to copy or reproduce this information without prior approval.

Ignion is an ISO 9001:2015 certified company. All our antennas are lead-free and RoHS compliant.

ISO 9001: 2015 Certified

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement N° 674491

ignion^w

Contact: support@ignion.io +34 935 660 710

Barcelona

Av. Alcalde Barnils, 64-68 Modul C, 3a pl. Sant Cugat del Vallés 08174 Barcelona Spain

Shanghai

Shanghai Bund Centre 18/F Bund Centre, 222 Yan'an Road East, Huangpu District Shanghai, 200002 China

New Dehli

New Delhi, Red Fort Capital Parsvnath Towers Bhai Veer Singh Marg, Gole Market, New Delhi, 110001 India

Tampa

8875 Hidden River Parkway Suite 300 Tampa, FL 33637 USA